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Abstract 

The relationship between nearest-neighbour growth- 
disorder models and Ising models is described in detail. 
The growth model with only two-body interactions is 
shown to be equivalent, in section perpendicular to the 
growth direction, to a simple Ising model. Two 
approximate solutions for the growth model are 
compared with exact solutions of equivalent Ising 
models, where possible, and also with computer 
realizations; the behaviour of these approximate 
solutions is discussed. 

1. Introduction 

Recent papers (Welberry & Galbraith, 1973, 1975; 
Welberry, 1977a,b) have described two-dimensional 
models of the introduction of substitutional disorder 
into crystals during growth. These models have enabled 
distributions of binary (0,1) variables to be produced 
from somewhat arbitrary 'growth probabilities'. Our 
current aim is to extend this work to more realistic 
three-dimensional models in which the growth prob- 
abilities are related specifically to the atomic or 
molecular interactions in the crystal. 

The growth model we consider here is the simplest 
3D case, in which the probability that the (0,1) variable 
Xt,j,k associated with the point (i,j, k) of a simple cubic 
lattice depends only on the values ofxt_~d.k, Xtd_t. k and 
Xt,j,k_ ~. This is the simplest type of stepwise growth, in 
which only the three nearest neighbours interact with 
the growth point; it may also be regarded as a 
superposition of triangular layers, each point in a new 
layer depending on three points in a triangle in the 
previous layer. 

The relationship between growth models and general 
Ising models has already been established (Enting, 
1977a,b,c; Welberry, 1977a,b; Enting & Welberry, 
1978); while growth-disorder models are in general 
special cases of more general Ising models, they them- 
selves may have as special cases Ising models of lower 
dimensionality. In particular, Welberry & Miller (1978) 
reported that, in certain 3D nearest-neighbour growth 
models, individual layers normal to the growth direc- 
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tion were equivalent to the simple nearest-neighbour 
Ising model on a triangular lattice, and pairs of 
successive such (111) layers were similarly equivalent 
to those on a honeycomb lattice. That paper was 
primarily concerned with the occurrence of phase 
transitions in the growth models. 

In this paper we derive and expand on the results 
given in Welberry & Miller (1978), to illustrate the 
relationship between growth probabilities and inter- 
action energies. We also describe some approximate 
methods for obtaining correlations and concentrations 
of the growth models and, where possible, compare the 
results of these methods with exact solutions of 
equivalenf Ising models. 

2. Probabilities and energies 

The growth model discussed here is the most general 
case described by the equation 

P ( x i ,  j, k = 1 IXi_l,j ,k,  X i , j_ l ,k ,Xi , j , k_ l )  

-~ C~ + ~Xt_ 1,j, k + ~Xi,j- 1, k + (~Xi,j, k-  1 

+ ~Xi_l,j, kXi,j_l,  k 

+ ~¢t , j_l ,kXt, j ,k_l  + ~Xi, j ,k_lXl_l , j ,  k 

+ ~ t _ l , j ,  kXt , j_l ,kXt , j ,k_l ,  (1) 

where xtd, k may take values 0,1. There are thus eight 
distinct probabilities which we denote a,b, . . . ,  h; this 
notation is shown in detail in Table 1. 

Although equation (1) describes the model, it does 
not help to relate the probabilities to physical inter- 
actions. Instead we shall consider the growth process 

Table 1. Probability notation for  the growth model 

Xl_l,.l,k Xi, j_l, k Xl,j,k_ l P(XI,j, k = I )  

1 1 1 a 
0 1 1 b 
I 0 1 e 
0 0 1 d 
1 1 0 e 
0 1 0 f 
1 0 0 g 
0 0 0 h 
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itself and apply Boltzmann statistics. The energy 
involved in adding point (id, k )  to the crystal may be 
denoted E~.tj i, or E0. ~ j k as xt j k is respectively 1 or 0, 
and the pro'bal~ility t ll'a't ' x  l, j, k --' i may thus be written 

P(xi,j,  k = 1 IXt_~,l,k,Xt,j_l,k,Xt,l,k_ ~) 

exp(--E1;ld,  k) 
= . (2) 

exp(--E0;td, k) + exp(--Emd, k) 

Equations of this type may be written for all values of 
Xi_ld ,  k , Xl, j_l ,  k and  Xl,j,k_ 1. 

It is convenient to transform here to (-1,1)variables  
Ota, k defined by ata, k = 2Xtd, k-- 1. The energy of the 
growth point may then be written as 

Ex;l , j ,  k = --Oi, j ,k(  Q + R l f f l _ l , j , k  

+ R 2Ol,j_ 1, k + R 3~71,j, k -  1 

+ Sl¢Tl_l,j,  kal , j_l ,  k + S2al , j_ l , k6 t , j , k_  1 

+ S3~71,j,k_lOl_l,j, k 

+ Tal_l,j, kat, j_l,kat,j.k_l). (3) 

For simplicity we assume that the three axes of the 
model are equivalent, so that R ~ , R 2 , R  3 = R and 
S l, S 2, S 3 = S and use the Ising-model convention that 
positive R corresponds to a ferromagnetic interaction 
leading to aggregation of like atoms. The probability of 
a 1 after three zeros may then be written 

e x p ( + Q -  3R + 3 S -  T) 
h =  

e x p ( Q -  3R + 3 S -  T) + exp( -Q  + 3R - 3S + T) 

1 
= (4) 

1 + exp( -2Q + 6R - 6S  + 2T) 

and the other growth probabilities may similarly be 
written 

1 
g , f , d - -  1 + exp( -2Q + 2R + 2 S -  2 T ) '  (5) 

1 
e,c,b = , (6) 

1 + exp( -2Q - 2R + 2S + 2T) 

1 
a = . (7) 

1 + exp( -2Q - 6R - 6S - 2T) 

If we now consider only two-body interactions, and set 
Q , S , T  = 0, then equations (4)-(7) may simply be 
written as 

1 - h = a ,  (8) 

1 - g =  l - f =  1 - d = e = c = b ,  (9) 

where a and b are related by 

a/(1 --  a) = [b/( 1 - b)] 3. (10) 

In two dimensions a similar treatment based on two- 
body nearest-neighbour interactions gives rise to a 
linear growth model, in which the growth probabilities 

may be expressed as linear functions of X i_ 1,j and Xi, j_ 1 "~ 
considering equation (1), this would involve setting J, t, 

r/ and 2 equal to zero. An exact solution of this 
model, in which the concentration and all correlation 
coefficients are expressed as functions of a, fl and ?, 
was obtained by Welberry & Galbraith (1973), 
following work by Whittle (1954) and Bartlett (1967, 
1968). The growth model generated by equations (8)- 
(10) is, however, not linear, and no exact general 
solution exists; in the next section we show that by 
relating the growth model to a soluble Ising model the 
concentration and some of the correlations may be 
determined. 

3. lsing formulation 

The method described here is an extension of that 
developed by Welberry (1977a) and Enting (1977b)in 
the study of some symmetry-dependent solutions of 
two-dimensional growth models. The argument will be 
followed at a very general level to relate the Ising-model 
parameters to the coefficients of equation (3) before 
discussion of some simpler special cases. 

Consider an infinite three-dimensional array and 
associate with each point a variable a~.j, k which initi- 
ally has value - 1  at all points. Now select four adjacent 
points A , B , C , X  as illustrated in Fig. 1 and let the a~.j. k 
of these points take values - 1  or 1. Including only 
interactions within tetrahedra such as A B C X  then the 
total interaction energy of this infinite array may be 
written as 

E = - - ~ .  ~ ~ {Had,j, k + Jlai,j, kal_l,y,k + J2ai,y, kai,y_l,k 
i j k 

+ J3at,y.kat,y,k_~ + J4ai_l,y, kat, y_~,k 

+ Jsat,j_~,kaid, k_l + J6ai,j,k_~at_~,y,k 

+ Zla l ,y ,  kffl_l,j ,  kai . j_l ,  k + Z2ai , j ,  ka i , j_Lkai , j , k_  1 

+ Z3¢Ti,j, kCTi,j,k_lai_l,j, k + Z 4 a t _ l , L k a i , j _ L k a i , j , k _  1 

+ Ka i . j ,  ka i_ l , j . ka i . j_ l . ka i , j , k_  1 }. (11) 

A 

Fig. 1. Notation for the simple nearest-neighbour growth model, in 
which X depends only on A~B,C. 
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The relationship between the coefficients H,J~, etc. and 
interactions within tetrahedra such as A B C X  is 
summarized in Table 2. 

The energy is related to the growth probabilities 
using the equation 

exp(--E) 
H I-[ 1-I e ( x i . j , k =  l l X i - l . j , k ' X i , j - l , k ' X i , j , k - l )  - -  - -  , 

i j k Z 

(12) 

where Z is a constant (the partition function) for given 
H,J~,  etc. and th.j. k = 2xi,j, k -- 1. Taking logarithms of 
both sides, equation (12) becomes 

~. ~. ~. ln[P(xl,j ,k = l lxi_l,y,k,Xi,y_l,k,Xl,y,k_l)] 
i J k 

-- --ln(Z) -- E. (13) 

For practical purposes the infinite three-dimensional 
array is represented by a 4 x 4 x 4 array, with 
summations of i , j ,k  over the range 2 to 4; this covers 
all the interactions involving the points of one tetra- 
hedron. 

There are in all sixteen equations of the form of (13), 
and the coefficients of these were determined using a 
computer program. The first equation, when all tri,j, k = 
- 1 ,  is simply 

271n (1 -  h ) = - - 2 7 ( - - H  + J,  + "/2 + '/3 + ,/4 + J5 + '/6 

--  L~ --  L2 --  La --  L4 + K)  --  In(Z),  

(14) 
and this is subtracted from all the others to eliminate 
the constant term. The four equations for the cases 
where only one of the tri,j, k equals 1 are identical, 
leaving twelve distinct equations relating the growth 
probabilities to the Ising-model energy terms. After 
some rearrangement these equations may be written in 
matrix form as 

H 

J1 

J2 

J3 

A 
J~ = 
J~ 

Lt 

L2 

La 
I 

L41 

_ K _  

- - 4  --2 --2 --2 0 0 0 2 --2 

1 --1 1 1 --1 1 --1 --1 --1 

1 1 --1 1 --1 --1 1 --1 --1 

1 1 

1 - - 1  

1 1 

1 - - 1  

--1 1 

--1 --1 

--1 1 

--1 1 

1 - - 1  

1 --1 1 --1 --1 --1 --1 

--1 1 1 --1 --1 1 1 

--1 --1 --1 1 --1 1 1 

1 --1 --1 --1 1 1 1 

1 --1 --1 1 1 --1 1 

1 1 1 --1 1 --1 l 

--1 1 1 1 --1 --1 1 

1 1 --1 --1 - - I  1 --1 

--1 --1 1 1 1 --1 --1 

This equation covers the most general case; we shall 
now consider the effect of some conditions on it. 

We first impose the condition that the model must be 
invariant to the interchange of tr = 1 and o = - 1 .  This 
gives the following relations between the growth 
probabilities: 

1 - h = a ;  1 - g = b  
(16) 

1 - - f = c ;  1 - d = e ,  

and for this case equation 

H I  0 

J1 I 1 

J2 [ 1 

1 

1 

1 

1 

0 

0 

0 

0 

1 

J,, 
I 

J'i 

L1 I 
L21 
L31 
L4i  

i 
/¢I 

1 

(15) becomes 

o o o o o o d  
--1 1 1 - - 1  1 - - 1 - - 1  

1 - - 1  1 - - 1 - - 1  1 - - 1  

1 1 - - 1 - - 1 - - 1 - - 1  1 

- - 1 - - 1  1 1 - - 1 - - 1  1 

1 - - 1 - - 1  1 1 - - 1 - - 1  

--1 1 - - 1  1 - - 1  1 - - 1  

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

- - 1 - - 1 - - 1 - - 1  1 1 1 

m 

ln(a) 

ln(b) 

In(c) 

In(e) 

In(1 - a) 

In(1 - b )  

ln(1 - c) 

In(1 - e) 

(17) 

The reversibility condition thus has the effect of setting 
equal to zero the interactions H, L 1 , L 2 , L 3 , L  4 which 
involve an odd number of points. The remaining inter- 
actions are J1 ,J2 ,J  3 which are two-body interactions 

0 0 0 2 2 2 4 -  

1 --1 --1 1 --1 1 1 

- 1  1 - 1  1 1 - 1  1 

- 1  - 1  1 - 1  1 1 1 

- 1  --1 1 1 - 1  --1 1 

1 - 1  - -1  --1 1 --1 1 

--1 1 --1 - 1  --1 1 1 

- 1  --1 1 1 --1 --1 1 

1 - 1  - 1  - 1  1 - 1  1 

--1 1 --1 --1 - 1  1 1 

1 1 1 --1 --1 --1 1 

1 1 1 --1 --1 - 1  1 

-In(1 

In(1 

ln(1 

In(1 

In(1 

ln(1 

In(1 

In(1 

- h)-  

- g )  

- - f )  

- d) 

- e) 

- b )  

- c )  
- a) 

In(h) 

ln(g) 

In ( f )  

In(d) 

In(e) 

In(b) 

In(c) 

ln(a) 

(15) 
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Table 2. Interactions between points o f  tetrahedra such 
as A B C X  o f  Fig. 1 represented by coefficients o f  equa- 

tions (3) and (11) 

Interaction Coefficient Coefficient 
between points equation (3) equation (11) 

x Q H 
XA RI Jl 
X B  R2 J2 
X C  R 3 J3 
AB - S, 
B C  - J5 
CA - J~ 
X A B  S l L 1 
X B C  S 2 L 2 
X C A  S 3 L 3 
A B C  - L 4 
X A B C  T K 

between points in adjacent (111) layers; J4,Js,J 6, two- 
body interactions between nearest-neighbours within a 
(111) layer; and the four-body interaction K between 
three points in a (111) layer and one point in the 
subsequent layer. 

For this model we may also make a comparison 
between the coefficients of the Ising-model equation 
(11) and the coefficients of equation (3), describing the 
energy of the growth model. From this we find that 

Q =H=0;  R1 =J1 
R2---- J2; R 3 - - J  3 

T = K ;  S I ,  S 2 , S  3 = L p L 2 , L  3 = O. 

(18) 

If we now include the equivalence of the three axes as a 
further condition, so that b = c = e, then the non-zero 
parts of (17) become 

[ a b 1 
J i , J 2 , J 3  = 1 In , (19) 

1 - a  1 - b  

J4,Js,J6 = l ln[  a(a - a ] b ( 1  - ' (20) 

[ a / 1 - b ~ 3 ]  

For the growth model based on two-body inter- 
actions, for which equation (10) is valid, then K = 0; 
we may also note that this model is invariant to 
reflection in the (111) plane. If we isolate a pair of 
successive (111) layers forming a puckered two- 
dimensional honeycomb lattice the two sets of J4,Js,J  6 
interactions within this double layer can be considered 
as cancelling the two sets of J~,J2,J3 interactions 
linking the selected double layer to the rest of the 
lattice. This result is obtained from the star-triangle 
transformation (Syozi, 1972) which may be used to 
show that Ji, J2,Ja on the honeycomb lattice are 
eqmvalent to -J4,-Js,-J~,  on a triangular lattice. Any 
double (111) layer may thus be 'decoupled' from the 
remainder of the three-dimensional lattice, and by a 

similar argument an individual (111) layer may be 
regarded as a two-dimensional triangular lattice 
decoupled from the rest of the three-dimensional model. 

The three-dimensional growth-disorder model may 
thus be regarded as a stack of decoupled two- 
dimensional nearest-neighbour Ising models on either 
the triangular or honeycomb lattices, provided that the 
growth model is based only on two-body interactions. 
These Ising models have been solved (Houtappel, 1950; 
Potts, 1952), and these solutions may_ be used to obtain 
the concentration and [100] and [110] correlations of 
the growth model. In addition, and most importantly, 
the critical point may be determined. 

We shall now briefly consider the application of (17) 
to some cases for which the interactions J~,J2,J 3 are 
not all equal. For example, suppose one of the [110] 
interactions is constrained to be zero. I f J  4 = 0 and J5 = 
J6, then from (17)we may write 

J 4 = ~ l n [ b C ( 1 - b ) ( 1 - c ) ]  = l n ( 1 ) ' a e ( l  - a)(1 - e) (22) 

and since the equality of ./5 and J6 implies b = c this 
equation may be simplified to 

b2(1 - b ) 2 = a e ( 1  - a ) ( 1  - e ) ,  (23) 

which may only be satisfied by setting b = a, e = 1 - a. 
Equation (1) thus reduces to a two-dimensional growth 
model, while the only non-zero interaction of (17) is 

J3=~ln[  e ( 1 - a ) ( 1 - b ) ( 1 - c )  ] [ - ~ -  a]  
abe(1 - e) = ½1n , (24) 

all the other terms reducing to zero. This growth model 
is thus equivalent in (11) section to a one-dimensional 
Ising model. 

We shall now consider the location of the critical 
points in some more general cases, and we start by 
introducing the notation 

S u = sinh(2J,,); C,, = cosh(2J~), (25) 

for u = 1, 2, . . . ,  6. From Syozi (1972) the equations 
for the star-triangle transformation are 

$2 = 4(s~s2)2/a 4, 

S 2 = 4($2S3)2/A 4, (26) 

S 2 : 4 ( S 3 S 1 ) 2 / A  4, 

where A 4 = 4(S 2 + S 2 + S ] + 2C~C2C 3 + 2). From 
the same source, the equations which must be satisfied 
at the critical point are 

C 1 = _ C2C 3 + S2S3C~, 

C 2 = - C3C 1 + $3S1C 2, (27) 

C 3 : _ f i G  2 + S 1 S 2 C  3. 
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One obvious simple case to investigate is when S~ = S 2 
= $3/q. Then C~ = C2 and equations (27) reduce to 

C 1 : - -  f i G  3 -Jr" qS2C1, 
(28) 

C 3 = _ C  2 + S21c3, 

from which the critical point is defined by 

S,(critical) = ( ~ )  1/2 . (29) 

The results for several values of q are summarized in 
Table 3. 

Imposing a relationship between hyperbolic func- 
tions of the interaction parameters is convenient but 
hardly realistic. However, if we consider series of the 
form J~ = are = J3/q we may obtain the growth 
probabilities using equations such as (4)-(7), and then 
use an iterative method to solve equations (27) and 
locate the critical point. The critical values for Ji,J3 and 
corresponding growth probabilities were determined for 
several values of q, and these results are summarized in 
Table 4. 

The equivalence between 3D nearest-neighbour 
growth models based on two-body interactions and 
some simple 2D nearest-neighbour Ising models has 
enabled us to calculate exact values for many of the 
parameters of these growth models. However, for more 
complicated growth-disorder models we must use 
approximate methods such as those described in the 
next section. 

Table 3. Critical points for series of the form sinh (2J1) 
= sinh (2J 2) = sinh (2J3)/q 

Growth probabilities at the critical point 
a b,c d 

3 0.9854 0.8873 0.5206 
2 0.9830 0.8536 0.6294 
1 0.9811 0.7887 0.7887 
½ 0.9829 0.7236 0.8935 

0.9852 0.6890 0.9312 
-~ no critical point 

no critical point 
- 1  no critical point 
- 2  no critical point 
- 3  0.4456 0-2113 

Table 4. Critical points of series Q1 
(Qt > O) 

r Q, Q3 

3 0.4812 1.4436 
2 0.5306 1.0613 
1 0.6585 0.6585 
½ 0.8314 0.4157 

0.9495 0.3165 
--~ 0.9495 -0.3165 
--~ 0.8314 -0.4157 
- 1  0.6585 -0.6585 
- 2  0.5306 -1.0613 
- 3  0.4812 -1.4436 

4. Approximate methods 

The two methods described in this section both depend 
on triangular groups of points in the (111) layers, first 
of three points and then of six. The basic method is 
similar to the 'matched boundary' technique of Wel- 
berry & Miller (1977) for the solution of some two- 
dimensional growth-disorder models. Only the three- 
point method will be described in detail, since the same 
principles are common to both methods. 

We consider three adjacent points A,B,C in a (111) 
plane of the lattice and investigate the transition to 
three points A',B',C' in the subsequent layer; this 
notation is illustrated in Fig. 2. To estimate the 
probabilities of various A',B',C' we also need to know 
the conditional distribution of points D,E,F given 
A,B,C, and this is where we require a satisfactory 
approximation. 

The frequency of occurrence of various triplets 
A,B, C may be denoted byf~,f2, . . . , f8  as illustrated in 
Fig. 3. For the general three-dimensional growth model 
we have the equations 

o=A+A+A+A 
= A  +f4 +f7 +f8 (30) 

= f 5  + f 6  + f 7  + f 8 '  

where 0 is the concentration of ones. The nearest- 
neighbour and next-nearest-neighbour probabilities 
may be written as 

P,00 = gf2 + el4 + cf6 + afs, (31) 

Po,o =ff3 + el4 + bf7 + afs, (32) 

P001 = dr5 + c.f6 + bf7 + afs, (33) 

P ~ o = f 4  + fs,  (34) 

Pio, =f6 + fs, (35) 

Poli : f 7  + fs, (36) 

where ,  for  example ,  P0ol is the  probabi l i ty  t ha t  b o t h  
X~d,k and  Xld, k_ 1 = 1 and  P l io  is the  p robab i l i ty  tha t  
bo th  x~d,k and  x~_~,j+~, k = 1. W e  also have  the  e q u a t i o n  

8 

0.9180 Z fq = 1. (37) 

= Q2 = Q3/r q=l 

c 

' . .  . . . . . . . . .  ; . i t ;  . . . . . . . . .  
_+,o / \ o,,, I, 

] 

", c ' /  - / 

D 

Fig. 2. Notation for the three-point approximate method. 
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For the triangular-lattice simple Ising model, the 
frequencies of triangles ABC also apply to triangles 
A'B 'C '  as illustrated in Fig. 3, and hence these 
frequencies may be used to obtain the required 
distributions of D,E,F. As an example, the probability 
that C '  = 1 is given by 

e ( c ' =  llA,s)= [e(c '  = lID= 1,a,B)f, 

+ P ( C ' =  l lD=O,A,S , ) . f s l / ( f  r +Z) ,  (38) 

where r and s take appropriate values; ifA = 1 and B = 
0, for instance, then r = 7 and s = 3. 

The probability of each possible triplet A ' B ' C '  for 
given A,B,C is thus the product of three equations of 
the same form as (38). We may then write in matrix 
form the probability of each A'B 'C '  given each A B C -  
this matrix will be denoted by Z with elements z,=. If the 
matrix of frequencies is denoted by F, with elements f , ,  
then 

F = Z x F. (39) 

This suggests the possibility of determining the f ,  by an 
iterative process. 

Since the calculation of Z itself involves F, two levels 
of iteration are necessary. Assuming the initial values of 
the f ,  to be given, values of the Z,s are calculated and 
the stationary vector (F ' )  of this matrix found, either 
by iteration or by a powering method. The f ]  values are 
then used to calculate a new transition matrix Z'  and 
the stationary vector of this is found. The process 
continues until a completely stationary solution is 
reached, and the concentration and correlations are 
then calculated using equations (30)-(36). 

Fig. 3. Triangular frequency notation for three-point approximate 
method. 

In the six-point method we consider the transition 
from points A,B,C,D,E,F to points A',B' ,C' ,D' ,E' ,F'  
in the subsequent layer; this notation is illustrated in 
Fig. 4. For this method we assume that the frequencies 
of occurrence of the various sextets are the same as 
those of their inverted images, just as for the three-point 
method. The equations corresponding to (38) then 
involve eight terms on the r.h.s, instead of two. The next 
possibility after the six-point method is one involving 
ten points, illustrated in Fig. 5, but the computer space 
and time required for this would be very large and we 
have not investigated it. The figure used for the six- 
point method is the same as the outer figure, including 
dashed lines, for the three-point method (see Figs. 2 
and 4). There is a similar relationship between the 
figures for the six-point and suggested ten-point 
methods (Figs. 4 and 5) and this may be extended to 
larger numbers of points, if required. 

Enting (1977d) has pointed out that the three-point 
method described here is equivalent to the application 
to the triangular Ising model of the Kikuchi approxi- 
mation described by Hijmans & De Boer (1955). In 
this method the energy of the system is considered to be 

i • // • 

,-' 'O • " ,  
, , ' \ /  \ /  ',, 

~. " ? 'k  F,, , "  
',, E'O ,,' \ O c ' / ' ,  OF', 

0 
Fig. 4. Notation for the six-point approximate method. 

J I 

".,o A , o / %  
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Fig. 5. Possible ten-point approximate method. 
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a linear combination of the energies of m-figure 
assemblies, corresponding to the basic figure and a 
series of smaller subfigures. Each m-figure assembly 
consists of N independent figures of type m, distributed 
over their configurations as figures of the same type are 
distributed within the lattice. 

Hijmans & De Boer (1955) considered in detail the 
application of this method to the triangular-lattice 
simple Ising model, and showed that using a rhombus 
of four points as the basic figure gave exactly the same 
results as using a triangle of three points. The results 
they obtained are exactly equivalent to the method 
described here, in which the distribution of triangles 
such as A B D  of Fig. 3 is calculated from the 
distribution of triangles such as A B C .  

In the next section we shall consider the application 
of our approximate methods to models for which exact 
Ising solutions are available, but we may note here that 
our three-point method predicts exactly the same 
critical point as does the Kikuchi method based on 
either the triangle or the rhombus. Our six-point 
method could probably also be related to a Kikuchi 
approximation, but we have not investigated this. 

5. Comparison of approximate methods and Ising 
solutions 

We consider here the application of the three-point and 
six-point iterative methods to growth models defined by 
equations (8)-(10), for which exact values of the 
concentration and some correlation coefficients may be 
obtained from Ising-model solutions (Houtappel, 1950; 
Potts, 1952). 

The concentration 0 of the growth model is related to 
the magnetization m of the Ising model by m = 2 0 -  1. 
For the correlation coefficients we may note that, for 
the growth model, they are defined by 

ru.v = (Pu,,-  02)/(  0 -  02), (40) 

where P,. v is the probability that both x,  and x v equal 1. 
For the (0, 1) variables of the growth model this 
probability is equal to E(XuXv),  the expectation value of 
their product. Transforming to the (--1,1) variables of 
the Ising model, we find (Bartlett, 1976) 

ru, v = [ E ( a u a v ) - m 2 l / ( l  --mE), (41) 

SO that when m = 0 the coefficient of correlation 
between two points is equal to the expectation value of 
the product of their spin variables. Below the critical 
point this equality does not hold, the correlation 
coefficient decreasing while E ( a ,  av) increases. The 
models considered here have the three axes equivalent, 
so we may write 

r 1 = rl00, r010, r00 l, (42) 

r 2 = rl~ 0, r01 ~, ri0 l, (43) 

and the corresponding expectation values of products 
t t of spins as r~, r e. 

The computer programs used to obtain the results 
presented here follow the description given in {} 4. For 
the three-point method this is adequate, but for the 
six-point one it produced some complications. For 
instance, the model with b = 0.875 failed to converge 
(the convergence condition was that the change in allft 
be less than 0.0000001) and became cyclic, probably 
because of round-off errors, and the models with b = 
0-775 and 0.95 converged very slowly, in the former 
case because it is very close to the critical point given 
by this method. However, by modifying the iteration 
process slightly, the speed of convergence may be 
greatly increased. The initial frequency distribution 
used here corresponded to a model with zero cor- 
relation and a concentration of 0.75 (a ,b ,  . . . ,  h = 
0.75); the results obtained with an initial distribution 
corresponding to a random model with 0 = 0.5 will be 
discussed later. 

The results obtained using the two methods are 
illustrated in Figs. 6 and 7, which also show the exact 
values obtained from the Ising solutions. Fig. 6 shows 
some of the concentration values in the region of the 
critical point, and it is apparent that the iterative 
methods provide a good approximation to the actual 
behaviour of the Ising and growth models. Fig. 7 
illustrates the behaviour of the nearest-neighbour 
correlation coefficient r~ - the results for r 2 are 
qualitatively similar and are not shown here. 

The critical point of the Ising model marks the point 
at which, with decreasing temperature, the structure of 
the model becomes determined by long-range inter- 
actions instead of short-range ones, and at the critical 
point the correlation length is infinite. The critical point 
given by methods involving only a few points may thus 
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Fig. 6. Concentration and magnetization vs b for Ising series - 
exact solution and approximate methods. 
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be regarded as the point where the correlation length 
exceeds the dimension of the model. Approximate 
solutions involving only a few points will obviously not 
be very accurate in the neighbourhood of the critical 
point, but it is necessary to strike a balance between 
accuracy and the availability of  computing resources. 

The results described above were obtained using an 
initial concentration of 0-75. With an initial con- 
centration of 0.5 and zero correlations (a, b, . . . ,  h = 
0.5) the iterative methods may converge to an unstable 
solution below the critical point. Above the critical 
temperature there is one stationary value, the minimum 
at 0 = 0.5. Below the critical temperature there are the 
two minima corresponding to the ordered solutions, but 
there is a third stationary value at O = 0.5 which must 
also represent a valid, though unstable, solution of the 
model. The results obtained using these unstable 
solutions correspond in magnitude to those obtained 
when the iterative methods are applied to 'antiferro- 
magnetic'  growth models, for which 0 is always 0.5. 

I.O 

0.8 ~ :  
0.{5 • 3 - p t  

• * _ ~  * 6 - p t  

0'4 

0"2 

°o.:r~ . . . .  o:8 . . . .  O.B5 

b 
Fig. 7. Nearest-neighbour correlation and spin-product expectation 

for Ising series - exact solution and approximate methods• 

6. Approximate solutions of  non-ls ing models  

By non-Ising models we refer to those growth models 
for which there is no simple, or more importantly no 
soluble, equivalent Ising model. A convenient way of 
generating such models is to consider the ones 
generated by equations (8) and (9) without the 
restriction of (10), so that a and b may independently 
range from 0 to 1. This, as we have seen, is equivalent 
to setting Q, SI ,  S 2 , S  3 equal to zero in equation (3), 
with non-zero two-point and four-point interactions. 

Instead of (10) we now have the equation 

a/(1  -- a) = [b/( l - b)la/q, (44) 

which gives a series of curves including the Ising series 
(q = 1). It would undoubtedly be more realistic to 
impose conditions on the energy terms, such as T = 
R/q ,  but equation (44) gives series which are con- 
venient for investigating the behaviour of the approxi- 
mate methods over the range of a and b. We have so far 
considered only the location of the critical points of 
these series, comparing the approximate methods with 
computer realizations. However, Welberry & Miller 
(1978) showed that this is not sensitive to the exact 
location of the critical point since convergence to a 
stationary state becomes very slow in its neighbour- 
hood. The results of these comparisons are summarized 
in Table 5. 

The estimated accuracy of the critical points deter- 
mined from the computer realizations is presented in 
Table 5 as an estimated standard deviation or 67% 
confidence limit. For the b = 1 series this determination 
is very imprecise, but for the others it seems possible to 
locate the critical points to an accuracy of about +0.01 
in the probabilities, and to this degree of accuracy the 
results obtained from the six-point method agree quite 
well with the realizations. For the three-point method, 
however, the agreement becomes poor for large values 
of q, and for the b = 1 (q = ~ )  series the critical value 
of a obtained by this method is too small by about 0.1. 

Table 5. Cri t ical  po in t s  de t e rmined  by var ious  me thods  

a 
- q 

1 - a  

q 

,~(b= 1) 
100 

10 
1 
0.1 

0 (a = 1) 

Three-point 

0.730 < aca t < 0.735 
0.895 < boa t < 0.8975 
0.830 < bea t < 0.835 
0.765 < beat < 0"770 
0"705 < beat < 0"710 
0"665 < boa t < 0.670 

Six-point 

0 .830  < aca t < 0•840 
0 .905 < bea t < 0 .910  
0 .840 < berlt <~ 0•850 
0"775 < beat < 0"780 
0" 705 < berlt < 0-715 
0.665 < befit < 0-670 

Realization 

aerlt = 0 . 8 3  + 0 . 0 1  
beat = 0.910 + 0.005 
bea t = 0 " 8 5 5  _ 0 . 0 0 5  

beat = 0.790 + 0.005* 

bea t = 2/3t 

* The exact critical point is at b = 0.7887 for this series• 
t See discussion of this series in text. 
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The a = 1 (q = 0) series is a special case for which it 
appears that the three-point and six-point methods 
agree both with each other and with the computer 
realizations. The partially deterministic nature of this 
model, with probabilities taking values 0 and 1, gives 
rise to one particular result which is discussed below. 

Consider a cluster of N ones in a (111) layer 
surrounded by a sea of zeros and sum the probabilities 
of having ones in the subsequent layer. Since the 
probability of a one after three zeros is zero all ones in 
the new layer must arise from the cluster. We find that 
for b < ~ this sum is greater than N while for b > ] it is 
less. In other words, assuming beritleal -- 2 -- 7, above the 
critical point an isolated cluster will probably grow, 
while below the critical point it will probably shrink. 
('Above' and 'below' refer to temperature - in our case 
'below' means towards the totally ordered state, with 
a,b = 1, and 'above' means towards a more random 
model.) No general proof of this result has been 
obtained but it is true for every example we have tried. 

The behaviour of this series may thus be summarized 
quite simply. For the whole range (0 < b < 1) there are 
three possible solutions, with concentrations 0, ½, 1. For 
b < ] the two ordered solutions represent an unstable 
equilibrium - should the system be put into either of 
these states it will remain there, but they will not arise 
through normal operation of the growth process. For b 
> ] the ordered solutions - either all ones or all zeros - 
represent the stable states of the system, and any 
computer realization will eventually reach one or other 

.IF , . : 

q = 0 (a = 1 ) series 

b = 0 . 6 5  b = 0 . 6 7  b = 0 . 7  

q = 1 (Ising) series 

b = 0 . 7 7  b = 0 - 7 8 5  b = 0 . 8  

~. - 

q = 100  series 

b = 0 - 9 0 5  b = 0-91 b = 0 . 9 2  

Fig. 8. Sections of the 100th ( I l l )  layer for various growth- 
disorder models. 

of them. We may also note that the critical point for 
this series corresponds to the extreme value of the linear 
model; there is a similarity here with the two- 
dimensional linear model, for which the critical point is 
also at the extreme value. 

7. Computer realizations 

The critical points given in the previous section were 
determined using computer realizations of 100 layers, 
each layer consisting of 250 × 250 points with periodic 
boundary conditions. Fig. 8 shows sections of the 
100th layers of some of these realizations. The 
illustrations are for the critical regions of the A = 1 
(q = 0) series, the Ising (q = 1) series and the q = 100 
series. The change in appearance of the sections with 
increasing q is noticeable, with the large ordered regions 
of q = 0 being replaced by scattered individual points 
or small groups of the minor component for q = 100. 
The concentrations and correlations of the illustrated 
layers are given in Table 6; Figs. 9, 10 and 11 show 
how the concentration varies with layer number for 
several examples from each series, and here the differ- 
ence in behaviour of the A = 1 series is apparent. 

Table 6. Numerical parameters for layers illustrated 
in Fig. 8 

q b O r I r 2 f s  

1 0.77 0.6917 0.6069 0.4232 0.4937 
1 0-785 0.8364 0"5694 0.3819 0"6916 
1 0.8 0-9180 0.4910 0.2965 0.8234 

0 0.65 0.6672 0.6405 0.4669 0.4849 
0 0.67 0.8029 0.6844 0.5280 0.6852 
0 0.7 0.9062 0.7400 0.6020 0.8525 

100 0.905 0.6933 0.4823 0.3001 0.4454 
100 0.91 0.8073 0.3866 0.2087 0.5890 
100 0.92 0.9037 0.2297 0.0705 0.7520 
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2 5 I0 20 50  I 0 0  
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Fig. 9. Concentration vs layer number for various growth models 
of  the q = 0 (a = 1) series. 
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8. Discussion 

In this paper we have shown how the growth 
probabilities of our model may be derived from the 
interaction energies of the growth process, and also 
how they are related to the parameters of an Ising- 
model formulation. We have also demonstrated, as 
reported by Welberry & Miller (1978), that in section 
perpendicular to the growth direction, the growth 
model with only two-body nearest-neighbour inter- 
actions is equivalent to a simple Ising model, and we 
have shown that the concentration and some cor- 
relations of the growth model may be obtained from 
exact solutions of an eq,ivalent Ising model. 

In the second part of this paper we have described 
two approximate methods of solving the growth model 
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= 0-8 
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Fig. 10. Concentrat ion vs layer number for various growth models. 

of  the q = 1 (Ising) series. 
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Fig. 11. Concentra t ion vs layer number for various growth models 
of  the q = 100 series. 

to obtain the concentration and some of the cor- 
relations, and compared the values obtained by these 
methods with those obtained from exact solutions of 
lsing models. We have also considered the application 
of these approximate methods to more general growth 
models which include a four-point interaction by using 
them to determine the critical points of several series. In 
this case the approximate methods were compared with 
computer realizations of the growth models. 

This comparison shows reasonable agreement be- 
tween the six-point approximate method and the 
computer realizations for the whole range studied (see 
Table 5). For the three-point method, however, the 
agreement ranges from apparently exact (q = 0) to very 
poor (q = oo). The three-point method operates on the 
basic building blocks of a triangular lattice and the 
assumptions required to make it work apparently 
impose much more severe, and unrealistic, constraints 
than they do on the six-point method. The apparently 
exact agreement of both approximate methods with 
experiment for the A = 1 series is presumably a 
consequence of the partially deterministic nature of 
those models. 

The authors have benefited from numerous dis- 
cussions with Dr I. G. Enting. 
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